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In this issue of the journal, Diamond proposes a
new method for constructing ROC curves.? He believes
that the method has three principal advantages over
traditional ROC techniques, namely “1) the area under
the curve is defined by a single parameter” (resulting
in considerable simplicity); “2) the associated standard
deviation is analytically defined and readily com-
puted”; and “3) the curve is completely invariant with
respect to selection bias.” To achieve these goals he
has employed a model based on a log odds (logistic)
relationship between the test result and true disease
status. In this model the single parameter, m, is the
common odds ratio between test result and true dis-
ease status, common in the sense that it is assumed
to be constant regardless of which “cut-off” value is
selected for the test result. He proposes estimating m
using a weighted average of the odds ratio estimates
at each of the cut-off values for which data are avail-
able. The smooth ROC curve can then be plotted with-
out recourse to the much more complex iterative
calculations that are usually employed for the con-
ventional Dorfrnan—Alf approach.3

Diamond has shed light on some interesting aspects
of ROC curves, and we are pleased to have this op-
portunity to further the discussion, with a view to
continuing the development of ROC methodology, an
important tool for assessing the value of diagnostic
tests. However, we do have some disagreements with
Diamond with regard to the advantages cited above,
and we deal with them in turn:

1. Simplicity “1) the area under the curve is defined
by a single parameter.” It would certainly be desirable
if the essential features of ROC curves could typically
be summarized by a single parameter, and indeed in
the examples used by Diamond the fit does seem to
be reasonably good. However, this issue has been dis-
cussed extensively in the literature,® and the consen-
sus seems to be that “scale” terms are usually necessary
in addition to “location” terms such as m. Scale terms
accommodate differences in “spread” of the test re-
sponses, and the empirical evidence seems to suggest
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Ficure 1. One-parameter logistic (solid line} and binormal (open cir-
cles} ROC curves fitted by the method of maximum likelihood to
Diamond's ECG response data. The two curves are virtually indis-
tinguishable, and further question the claim that the one-parameter
logistic model can, of itself, eliminate verification bias.

that there is, for example, consistently more spread
(variation) in test interpretations in diseased subjects
than normal subjects in radiologic applications, lead-
ing to slopes that are less than unity (Greenes, personal
communication). Swets® points to some examples where
slopes are definitely above unity iwhen examining ab-
normal tissue cells) and others where they are below
unity (brain tumors).

What other attributes does the l-parameter (logistic)
curve have? The first is that it is virtually indistin-
guishable from the l-parameter curve based on un-
derlying normal distributions. Both are symmetric about
the negative diagonal, differing only in their extremes,
where there are not sufficient data to really choose
one over the other. Figure 1 shows the virtual super-
imposition of the fit of the two models to Diamond'’s
data from the exercise ECG.* Indeed, this figure in itself .
would suggest that if the logistic model'were invariant
to verification bias (see 3 below, then for all practical
purposes, the binormal model would be likewise.

The historical development of these two models is
instructive. Their similarity has long been known.®? For-
mal methods for fitting the logistic ROC were pub-
lished by Ogilvie and Creelman? in 1968, one year before
those for the binormal model (Dorfman and Alf, 1969).

*For both curves we estimated the parameters using maximum
likelihood.
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Interestingly, Ogilvie and Creelman chose the logistic
model for “practical rather than theoretical reasons”
since “the logistic distribution is easier to handle
mathematically and computationally.” They stressed
that “the two distributions are quite similar in shape
within the typical range of empirical proportions.”
Dorfman and Alf argued that “a procedure assuming
underlying normal distributions was preferred” be-
cause “a stable relation could not be found between
the sigma ratio of signal detection theory and the anal-
ogous parameter of the logistic model.” In reality, such
a relation does exist for the logistic model. In any case,
the binormal model has become the model of choice.

2. Statistical Properties “2) the associated standard
deviation is analytically defined and readily computed.”
What is more important than the small differences in
these two models (i.e,, the logistic and the normal) is
the common approach authors have taken to fit them.
In using the method of maximum likelihood, both
Dorfman and Alf and Ogilvie and Creelman formally
recognized the multinominal structure of the rating
data and the fact that successive ROC operating points
are inescapably correlated; these correlations are au-
tomatically taken into account in arriving at parameter
estimates and standard errors, i.e., their approaches
are as important for their maximum likelihood ap-
proach to estimation as for the particular distributions
chosen.

Diamond’s approach to the problem involves com-
puting a weighted average of the successive estimates
of m, the weights being the inverse variances of the
individual estimates. Unfortunately, the standard error
produced by this method is too small, since the stan-
dard error formula for m omits the fact that the suc-
cessive estimates of m are positively correlated. A simple
way of recognizing why this is a problem is to imagine
constructing a curve from continuous data. In such a
case we could create as many estimates of m as there
are data points (less one) by successively changing the
cut-off value to include the next point. Successive es-
timates of m which are either contiguous or close to
each other will be virtually identical, yet Diamond’s
formula would treat them as independent observa-
tions. Clearly, the more we divide the scale (by intro-
ducing more cut-off points) the more (spuriously)
precise our summary estimate of m will be.

In fact, a general methodology is available for esti-
mating parameters and computing the appropriate
standard errors of the ordinal-type data typically used
for constructing ROC curves.® This methodology in-
cludes both the logistic and normal models discussed
here, as well as a variety of other models, and also
permits adjustment for covariates. The application of
these techniques to ROC curves has been developed

bv one of us (CBB).?

3. Verification Bias “3) the curve is completely in-
variant with respect to selection bias.” In asserting a
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Table 1 o Diagnostic Performances in All Patients and in
Verified-only Patients (D = True Disease Status; R =
Resuit of Diagnostic Test)

Performance Using
R (as Positive)

-—— +- 4+ ++ 4-—or ++

A. If D was verified in alf

patients

D- 600 300 100 FP: 0.100 0.400
TN:  0.900 0.600

D+ 273 419 308 TP: 0.308 0.727

FN:  0.692 0.273
T+:  0.204 0.564

T—: 079 0.436
SLoPE (m):
0.250 0.250
B. If D was verified in only a
fraction of patients (in %
of R+ + patients; "z of
R+ — pts; Yaof R— —
pts)
D- 180. 150 75 FP: 0.200 0.600
TN: 0.800 0.400
D+ 68 210 231 TP: 0.454 0.866
FN: 0.546 0.134
SLoPE (m):
0.301 0.232

correction for verification bias, Diamond uses as jus-
tification the argument that selection for verification
does not directly depend on true disease status, as
originally suggested by one of us (CBB).! He then dem-
onstrates that if the selection depends oniv on the test
result, then the odds ratio, i.e., m, is invariant to the
bias. He then suggests that a model based only on the
odds ratio will, ipso facto, be invariant to bias.

There are two problems with this approach. First,
in general, selection for verification will depend on
other relevant factors in addition to the test result,
such as presenting signs and symptoms. Therefore, to
correct for bias one must be prepared to adjust for
these factors, as outlined in Begg and Greenes' general
formula.'t Diamond's model is restricted to the as-
sumption that selection depends only on the test re-
sult. We speculate that this assumption will be
inadequate, and therefore at best a crude approxi-
mation, for most clinical applications.

The second problem is that even if the assumption
that selection depends oniy on the test result is cor-
rect, Diamond’s model still does not properly correct
the bias. To illustrate this, we have constructed some
hypothetical data for which the constant odds ratio
model is true, but in which verification bias nonethe-
less skews our estimates.

+Cur focus in our original paper® on the simpie formula without
covariates was purely for expository purposes. Similarly, in our later
paper (Gray et al.*) we used the simple formulas in our exposition
because data on relevant covariates were unavailable, as is fre-
quently the case with retrospective data of this nature.—~CBB
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FiGuRe 2. Persistence of verification bias in logistic ROC curve. The
open symbols represent a one-parameter logistic ROC when all
tested subjects are verified. The solid symbols represent the ROC
curve that is generated if various percentages (1%—100%) of those
in the different test result categories are verified.

Table 1 shows “total-population’ data that generate
two ROC points obeying the “constant slope” property
of the Diamond model, as well as the data one would
observe if only three fourths of those rated + +, half
of those rated + — and one fourth of those rated — —
went on to be verified. It is evident that the two slopes
calculated from the verified sample differ both from
one another and from the common slope of the pop-
ulation curve.

To appreciate that this “unsteadiness” is not simply

an artifact of the small number of rating categories or
of rounding, we computed an analogous curve based
on 100 rating categories {fig. 2). Clearly the ROC curve
in the verified sample is different from the “constant
slope” curve in the overall group, even though the
difference is not especially substantial.

The reason for the discrepancy is that with Dia-
mond’s method each estimate of m involves an ag-
gregation of categories of test results for which the
verification probabilities differ. For example, the first
slope estimate (0.301) in Table 1B is obtained by ag-
gregating the categories — — and + —. However, these
categories have different verification rates, 0.25 and
0.50 respectively. Likewise, the second slope estimate
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involves aggregation of + — and + +. In either case
this leads to bias, although the errors do tend to cancel
each other out when the average slope is calculated,
as Diamond has done. However, an empirical curve
computed naively from a verified sample will not pos-
sess the symmetric shape mandated by Diamond's
model, and any estimates of the popular area index®
are likely to be distorted also.

Summary and Recommendations

The goals of Diamond’s approach are laudable,
namely to provide a simple, robust methodology that
is easily calculated by hand or on a spreadsheet, and
to circumvent the important, common problem of ver-
ification bias. However, we believe his model is overly
restrictive. As a consequence, the method may provide
poor fit due to the inability to accommodate scale
terms, and may not adequately compensate verifica-
tion bias by ignoring relevant covariates. Therefore,
there is a danger of oversimplification and superficial
analysis.
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